Краткое описание
Талантливый Людвиг Больцман — один из крупнейших учёных XIX века. Именно этот человек в своё время внёс колоссальный вклад в развитие молекулярно-кинетической теории.
Целеустремлённость Больцмана повлекла за собой то, что он стал одним из главных основателей статической механики.
Людвиг был автором многогранной эргодической гипотезы, статистического метода в подробном толковании идеального газа, который был основан на уравнении физической кинетики.
Больцман все свои силы вложил в то, чтобы общественность могла больше узнать о термодинамике. В итоге он смог вывести теорему, где подробно описал статистический принцип для второго начала термодинамики.
Физики высоко ценят точку зрения Больцмана, так как в результате многочисленных попыток он смог описать теорию излучения. В своих работах он неоднократно затрагивал вопросы электродинамики, оптики. Имя этого талантливого учёного было увековечено сразу в двух физических константах.
В своё время Больцман был убеждённым и последовательным сторонником теории многогранного атомно-молекулярного строения вещества.
В течение многих лет он был вынужден бороться с непониманием и отрицательными отзывами по отношению к его работам в научном сообществе того времени. Многие физики полагали, что молекулы и атомы представляют собой излишнюю абстракцию.
Коллеги Больцмана были настроены весьма консервативно, из-за чего у талантливого физика возникла депрессия, с которой он так и не смог справиться. Учёный покончил с собой.
На надгробном памятнике в знак огромной признательности к его заслугам было выбито уравнение S = k * logW. В этом уравнении константа k является произведением постоянной Больцмана. Для решения задач нужно соблюдать размерность физической величины.
Основное соотношение температуры и энергии
Традиционная модель идеального газа активно используется для правильного расчёта состояний реального вещества при давлениях и температурах, которые близки к нормальным показателям.
В этом случае размер молекулы существенно меньше объёма, который занят определённым количеством газа. А вот расстояние между частицами существенно превышает итоговый радиус их тесного взаимодействия.
В кинетической теории чётко описаны все необходимые понятия уравнения. Для поиска средней энергии таких частиц принято использовать следующую формулу: Ecp = 3/2 * kT.
Расшифровка выглядит следующим образом:
- Т — температура.
- Е — кинетическая энергия.
- 3,2* k — используемый коэффициент пропорциональности.
В этом случае используется число 3, которое характеризует количество степеней свободы поступательного движения молекул в трёх пространственных измерениях.
А вот величину k через некоторое время назвали постоянной Больцмана в честь австрийского физика. Этот термин призван показывать то, какую часть энергии или джоуля содержит в себе один градус.
Значение константы определяет, насколько именно может статистически увеличиваться энергия хаотического движения одного фрагмента идеального газа при повышении температуры на 1°. Общая энергия теплового излучения определяется законом Стефана — Больцмана.
Установить зависимость между константой и другими фундаментальными постоянными можно, приравняв величину средней энергии молекул, найденную разными способами.
Распределение молекул статистическим образом
Учащихся часто интересует вопрос, чему равно значение постоянной Больцмана, так как это направление имеет огромную ценность в физике.
Учёными было доказано, что состояние вещества макроскопического порядка представляет собой конкретный результат поведения огромной совокупности определённых частиц, так как именно с их помощью можно описать все существующие сегодня статистические методы.
Для решения элементарных задач обязательно нужно разобраться в том, каким именно образом происходит распределение энергетических параметров молекул газа.
В этом случае следует учесть несколько важных нюансов:
- На практике было доказано, что физический смысл постоянной Больцмана обязательно включает в себя своеобразное максвелловское распределение кинетических скоростей и энергий. Результат в полном объёме отображает то, что когда газ пребывает в состоянии равновесия, большинство молекул обладает определёнными скоростями, близкими к некоторой наиболее вероятной скорости. Для отображения массы молекулы предназначена определённая формула: v = √(2kT/m0).
- Практикуется применение статистики Больцмановского распределения потенциальных энергий для газов, пребывающих в поле каких-либо сил. К примеру, гравитация на нашей планете. Итоговый показатель во многом зависит от соотношения сразу двух факторов: притяжения к поверхности Земли, а также хаотического теплового движения частиц газа. Это значит, что чем ниже будет потенциальная энергия молекул, тем выше будет их итоговая концентрация.
Стоит учесть, что оба этих метода успешно объединяются в многофункциональное распределение Максвелла-Больцмана.
В этом случае учёные предусмотрели наличие экспоненциального множителя — е-Е/ kT. Большой буквой Е обозначают сумму кинетической и потенциальной энергии. А вот kT обозначают среднюю энергию теплового движения, которая отлично управляется постоянной талантливого физика Больцмана.
Ключевые нюансы
Если при абсолютной температуре (Т) хранится однородный идеальный газ, то та энергия, что приходится на каждую поступательную степень свободы, обязательно будет равна формуле kT /2 (это утверждение подробно описано в распределении Максвелла).
Если рассматривать конкретную ситуацию на примере комнатной температуры, то итоговый показатель энергии будет находиться в пределах 2.07 * 10-21 Дж (0.013 эВ).
В результате проведённых исследований удалось доказать, что в одноатомном идеальном газе каждый отдельный атом обладает сразу тремя степенями свободы. Данные соответствуют трем пространственным осям, благодаря чему на каждый атом приходится энергия, которая равна формуле 3/2 kT.
Правильно вычислить среднеквадратичную скорость атомов можно только в том случае, если изначально знать реальную тепловую энергию. Используемые данные должны быть обратно пропорциональны квадратичному корню атомной массы.
В учебниках по физике содержится информация о том, что стандартная среднеквадратичная скорость при комнатной температуре может варьироваться от 1379 м/с (утверждение уместно по отношению к гелию) до 240 м/с (ксенон). Ситуация немного усложняется в том случае, если речь касается молекулярного газа.
Пример: пять степеней свободы имеет двухатомный газ (колебания атомов в молекуле отсутствует только в том случае, если температура окружающей среды кардинально снижена).
Экспертами было доказано, что именно энтропия термодинамической системы может измеряться как натуральный логарифм от числа разных микросостояний (V), которые в точности соответствуют конкретному микроскопическому состоянию (чаще всего это утверждение касается состояния с заданной полной энергией).
Для решения задачи лучше воспользоваться этой формулой: S = k ln V. Постоянная Больцмана отображена коэффициентом пропорциональности (k). Определяющая связь между микроскопическими (V) и макроскопическими состояниями (S) отлично выражает главную идею многогранной статистической механики.
Способы нахождения постоянной Больцмана
Физика является интересной и многогранной наукой. Для решения поставленных задач часто используется постоянная Больцмана. Формула имеет свои особенности, но для изучения всех нюансов понадобится реальный эксперимент.
Для этого необходимо взять обычное зеркало и подвесить его в воздухе при помощи упругой нитки. Можно представить, что созданная система зеркало-воздух пребывает в стабильном состоянии, которое ещё называется статистическим равновесием.
Крошечные молекулы воздуха ударяют в поверхность зеркала, которое на практике ведёт себя как броуновская частица. С учётом подвешенного состояния во время эксперимента можно наблюдать вращательные колебания вокруг определённой оси, которая совпадает с вертикально направленной нитью.
После проделанных манипуляций нужно направить луч света на поверхность зеркала. Даже при минимальных поворотах и вращающихся движениях зеркала отражающийся луч будет существенно смещаться. Благодаря этому, есть возможность измерить вращательные колебания объекта.
Для обозначения модуля кручения нужно использовать большую букву Р. Момент инерции зеркала по отношению к основной оси вращения можно записать как В, а вот угол поворота зеркала — как Т. Недостатком этого примера можно считать то, что сила упругости стремится вернуть зеркало в равновесное положение.
Если умножить обе части на Т и проинтегрировать результат, то в итоге можно будет получить следующий результат: Р ≈ 10-15 Н * м; <Т> ≈ 4 ⋅ 10 −6. Если знать основы многогранного броуновского движения, то в итоге можно будет найти реальную постоянную при помощи измерения макропараметров.
Существующая энергия равномерно распределяется по степеням свободы на каждую отдельную её степень. Это значит, что на каждую степень будет приходиться равная кинетическая энергия: <εi>=½kT.
Для правильного вычисления средней энергии принято использовать следующую элементарную формулу: <ε>=i/2kT, где i=m post +m υr +2m kol. Решение этой задачи выглядит следующим образом:
- m post = 3, m υr = 3, а это значит, что m kol = 3N − 6;
- i = 6 + 6N — 12 = 6N − 6;
- <ε> = 6N − 6/2kT = (3N − 3) kT.
Решение этой задачи является элементарным, но это утверждение актуально только в том случае, если учащийся заранее разобрался со всеми тонкостями. После проведённых манипуляций можно определить, что средняя энергия молекулы будет составлять <ε> = (3N − 3) kT.
Физическая константа
Этот раздел физики нельзя оставлять без внимания. Экспертами неоднократно было доказано, что формула Больцмана относится к категории фундаментальных констант.
Если учесть все нюансы, то в итоге можно определить характеристики микроскопических явлений молекулярного уровня с параметрами процессов, которые можно наблюдать в макромире. Константа Больцмана входит в ряд важных уравнений в физике.
На сегодняшний день всё ещё неизвестно, существует ли в науке какой-либо физический принцип, на основании которого можно было бы вывести необходимую формулу исключительно теоретически.
А это значит, что в качестве меры соответствия кинетической энергии частиц можно было бы использовать другие величины и математические единицы вместо привычных градусов. Тогда численное значение константы имело бы совершенно другой показатель, но она по-прежнему оставалась бы постоянной величиной.
Если рассматривать примеры других фундаментальных величин аналогичного принципа со стандартным зарядом и постоянной гравитационной, то наука воспримет существующую константу Больцмана как данность и будет использовать её для теоретического описания протекающих на планете физических процессов.
В конце 2011 года состоялась Генеральная конференция по весам и мерам, которая приняла резолюцию. В документах было подробно описано то, что нужно выполнить полноценную ревизию Международной системы единиц, чтобы иметь возможность зафиксировать значение постоянной.
Такая фиксация была напрямую связана со стремлением переопределить конкретную единицу термодинамической температуры кельвин.